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Abstract. We investigate analytically the quantum phase transition in a system of two chains
of ultrasmall Josephson junctions, coupled capacitively with each other. Two different schemes
of the coupling, straight and slanted, between the two chains are considered. In both coupling
schemes, as the coupling capacitance is increased, the transport of particle-hole pairs is found
to drive a quantum phase transition of the Berezinskii—Kosterlitz—Thouless type from insulator
to superconductor. A substantial discrepancy between the transition points in the two coupling
schemes is observed, which reflects the difference between the transport mechanisms.

1. Introduction

Systems of ultrasmall tunnel junctions composed of metallic or superconducting electrodes
have attracted considerable interest, owing to the remarkable roles of the Coulomb interaction.
Of particular interest here is the Coulomb-blockade effect due to sufficiently large charging
energy, which leads to single-charge (electron or Cooper-pair) tunnelling [1]. In order for
this tunnelling to occur, however, it should be energetically favourable with respect to the
electrostatic energy of the system. Otherwise, more complex elementary processes which
involve several charge-tunnelling events should become dominant. For example, recent theor-
etical prediction [2] and experimental demonstration [3] have revealeddhanellingof
electron—hole pairs in two one-dimensional (1D) arrays of metallic tunnel junctions coupled
by large inter-array capacitances (see figure 1). Such cotunnelling of electron—hole pairs results
in the interesting effect of current drag: the current fed through either of the chains induces a
secondary current in the other chain. The primary and the secondary currents are comparable
in magnitude, but opposite in direction.

A similar current-drag effect has also been observed in a system with a slightly different
configuration, where each electrode in one array is coupled aslant to two adjacent electrodes
in the other array (slanted coupling; see figure 2) [4]. Unlike in the case of straight coupling
mentioned above (see figure 1), where the low-energy state can be preserved only if an electron
and a hole tunnel simultaneously (cotunnelling), in this case of slanted coupling the low-energy
state can be preserved for sequential tunnelling of an electron and a hole. It has been suggested
that this correlated sequential tunnelling might be more favourable than the second-order
process of cotunnelling via a quantum-mechanical virtual state.
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Figure 1. A schematic diagram and an equivalent circuit for the system with straight inter-chain
coupling. Crosses superimposed on capacitor signs denote Josephson junctions, each with the
coupling energyE; and the junction capacitaneg,. The self-capacitance and the inter-chain
capacitance are given lf§p andCy, respectively. After reference [2].
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Figure 2. A schematic diagram and an equivalent circuit for the system with slanted inter-chain
coupling. The symbols have the same meaning as those in figure 1. After reference [4].

More interestingly, in the case where the tunnelling junctions are composed of ultrasmall

superconducting grains, the role of the electron—hole pair is played by the counterpart, the
pair of an excess and a deficit in Cooper pairs, which we simply call a particle—hole pair.
Furthermore, in such ultrasmall Josephson-junction systems, the competition between the
charging energy and the Josephson coupling energy is well known to bring about the noble
effects of quantum fluctuations [5-8]. It has recently been proposed that, combined with
these quantum-fluctuation effects, the cotunnelling of particle—hole pairs in a capacitively
coupled 1D Josephson-junction array (JJA) drives the quantum phase transition from insulator
to superconductor [9]. Here, capacitive coupling should be distinguished from Josephson
coupling (which allows inter-array Cooper-pair tunnelling). The quantum-fluctuation effects
in the corresponding Josephson ladders have been studied in the literature [12].

In this paper, we extend the previous work [9] on two capacitively coupled 1D JJAs to

consider both straight coupling and slanted coupling. The focus will be on the similarities of
and differences between the two coupling schemes. It is showimtbpite of the remarkable
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difference in the transport at the mesoscopic sctthe two cases are indistinguishable on
long-time and large-length scales: as the coupling capacitance is increased, both cases exhibit
the insulator-to-superconductor transition of the Berezinskii—Kosterlitz—Thouless (BKT) type
[10, 11], whose superfluid phase is uniquely characterized by the condensation of particle—
hole pairs and by perfect drag of supercurrents along the two chains. As contrasted with
the cotunnelling process in the straight-coupling scheme, however, the correlated tunnelling
nature of the elementary process in the slanted-coupling scheme results in a substantially lower
transition point.

This paper is organized as follows. In section 2 we present the models for the systems
with straight or slanted coupling, together with the regions of interest in the parameter space.
Section 3 is devoted to the transformation of the models into equivalent two-dimensional (2D)
systems of classical vortices, while section 4 examines the conductivity of the system in the
vortex representation. On the basis of the results of sections 3 and 4, the phase transition and
the current-drag effect are discussed in section 5, which constitutes the main part of this paper.
In particular, a thorough discussion on the role of particle—hole pairs in the quantum phase
transition and in the transport behaviour is given. Finally, section 6 concludes the paper.

2. Coupled chains of Josephson junctions

We consider a system of two coupled chains of Josephson junctions, where each chain is

characterized by the Josephson coupling enégynd the charging energigg = ¢?/2C,

and E; = ¢?/2C, associated with the self-capacitan€gand the junction capacitancg,

respectively (seefigures 1 and 2). The two chains are coupled with each other by the capacitance

C;, with which the electrostatic energy; = ¢?/2C; is associated. Two different ways of

coupling are considered: eachislandin one array is coupled either parallel to one island (straight

coupling; figure 1) or aslant to two islands (slanted coupling; figure 2) in the other array. There

is no Cooper-pair tunnelling allowed between the chains. The intra-chain capacitances are

assumed to be so small{, E1 > E;) that, without the coupling, the two chains would each

be in the insulating phase separately [6]. It is further assumed that the coupling capacitance is

sufficiently large compared with the intra-chain capacitan€gss> Co, C1. In that case, the

electrostatic energy of a particle—hole pair, which is of the ordet;0fis much smaller than

that of an unpaired charge, which has the ordeEgbr E;. For the most part, this work is

devoted to the case of identical chains, but non-identical chains will also be briefly discussed.
The system with straight coupling is well described by the Hamiltoltiaa- H- + H,

with the Josephson-energy part

H; =—EJZcos[¢(e;x)—¢(e;x+1)] 1)
£,x
and the charging-energy part
He=2E; Y n(t:x)Cpl(x, x (s x)) 2)
0,0 x,x’

where the number(¢; x) of excess Cooper pairs and the phasg x) of the superconducting
order parameter in the grain aton chain¢ (=1, 2) are quantum-mechanically conjugate
variables: fi(¢; x), ¢ (¢'; x")] = 18,8 Rescaling the capacitances in units @f; Xi.e.,
Co/2C; — Co < 1 and(C1/2C; — C1 <« 1), we obtain the Fourier transform of the
capacitance matrix given by equation (2) in the following form:

~ ~ 1 —
<C<q)=c<q>[é 2]+5[_11 11] 3)
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whereE(q) = Cop+ C1A(g) with A(g) = 2(1 — cosg) is the Fourier transform of the sub-
matrix C(x, x") within one chain. It is of interest to rewrite the charging-energy part as the
SumH¢ = H} + H;, with each component given by

HE = E; Y n* @)V, x)n* () (4)

wheren® (x) = n(1; x) £n(2; x) and the interactiong * are given by their Fourier transforms

@ = @ = —a— (5)
Clq) 1+C(g)
Since5(q) « 1, we haveV* > V~ and it is obvious from equation (4) that the charge
configurations which do not satisfy the conditieh(x) = 1 for all x cost huge excitation
energies of the order dfy or E;. Accordingly, we expect the low-energy properties of the
system to be dominated by the charge configurations atith) = 0 andn~(x) = 0, &2; in
this casen_(x)/2 can be regarded as the number of particle—hole pairs located at
Inthe case of slanted coupling, the Josephson-energy partis still given by equation (1), but

for the charging energy it is convenient to rescale the capacitanceas;byrie dimensionless
capacitance matrix then reads

~ ~ [1 01,11 —-17.1[ 1 —et4
and the Hamiltonian of the system is given by
He=E; Y n(:x)Chplx, x)n(l’; x). (7)
00 x,x"

With the peculiar form of the capacitance matrix in equation (6), the charging-energipart
in equation (7) can be decomposed into two components:

HE = E; ) n*@VE, Xt () + E Y nfoVEie. xng) ()

wherenﬁ(x) = n(L; x) £ n(2; x — 1) are defined aslant with respect #& (x), and the
interactionsV* are again defined by the Fourier transforms:

o+ 1+5(4)
Vi) = —= = —

AC()[1+ C(g)] +sin“(q/2) ©)
7 C(q)

)= — ‘@ .
V= @I+ @) +sif(q/2)

As in the straight-coupling case, we ha¥é > V~ from equation (9), and expect the particle—
hole pairs £~ (x)/2 orn(x)/2) to play major roles in the transport. Unlike equation (5) for
the straight-coupling case, however, equation (9) shows that the interacti@an be long
ranged in general. For example, in the self-charging model=£ 0), the interactionV ~
between the particle—hole pairs ranges over the length sgade [16Co(1 + Cp)] 2, which

is far larger than unity. This fact may have a significant effect in a system of finite size (see
below). Onthe other hand, itis of interest that the nearest-neighbour charging ifigeel),

which gives an infinitely long-range interaction in the case of a single (decoupled) chain, leads
to V~ which is extremely short ranged (essentially on-site) in the system of coupled chains.
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3. 2D classical-vortex representations

In this section, the two models, one described by equations (1) and (2) and the other by
equations (1) and (7), are transformed into equivalent 2D classical systems of vortices. The
resulting systems reveal clearly the nature of the phase transitions, which will be discussed in
section 5.

3.1. Straight coupling

Itis convenient to write the partition function of the system in the imaginary-time path-integral
representation:

z=1] > / do (¢; x, 7) exp[-3] (10)

L,x,T n(l;x,7)

with the Euclidean action

0> nlx, DCrx, Xt X', 7) — fKZZcosv (; x,7)
szlﬁ/xxr

+iY Y nx, 7)) Ve (£ x, T) (11)
4 x

where the coupling constant has been defined t& ke ./E; /8E;, andV, andV, denote the
difference operators with respectt@ndz, respectively. The time has been rescaled by the
Josephson-plasma frequensy = /4E,E, /h, and the (imaginary-) time slickr has been
chosen to be unity (in units of/b,) [13]. The highly symmetric form of equation (11) with
respect to space and (imaginary) time makes it useful to introduce the space-time 2-vector
notationr = (x, ) and analogous notation for all other vector variables. We then employ the
Villain approximation [14] to rewrite the cosine term as the summation over an integer field
{m, (¢; r)}. Furthermore, with the aid of the Poisson resummation formula [14] and Gaussian
integration, we express the charging-energy term as the summation over another integer field
{m.(¢; r)} and obtain the partition function

z~T1 > / dp (¢; ) exp(—S) 12)

r m(€;r)
with

§=" D Corle, XN [Ved (L 1) — 20me (€ W[V (€ 1) — 2rm (€; 7)]
\/E et

f Z [V (l; 7) — 2mm, (€; 7)]2 . (13)
Using the varlable$i(r) = ¢(1; r) £ ¢(2; ) andm* (r) = m(1; r) £m(2; r) in the place
of ¢ (¢; r) andm(¥¢; r), respectively, we decompose the Euclidean action in equation (13) into

two parts:§ = §* + S, with

— % Z C=x, x5, (Ve (1) — 2emE (M[Ve (') — 2em* ()]

% D [Vep™ () — 2mE ()] (14)

where the new capacitance matri€gs(x, x’) have been defined accordingffé(q) =C (q)
andC~(¢) = 1+ C(q). One now follows the standard procedure [6, 15] to integrate out
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{¢* ()} and obtains, apart from the irrelevant spin-wave part, the desired 2D system of classicall
vortices, which is also decomposed into the two subsystems. Itis described by the Hamiltonian
Hy = Hy, + Hy, with

Hy = V2rn°K Y v ) U — vy () (15)
where the vortices™ (r) are related to the vorticege; ) on chainé via
vE(r) = vl r) £u(2r)

and the interactions between vortices are defined via their Fourier transforms:

C*(q)

U*(q) = - :
A(q) + CH(q) A(w)

(16)

It is instructive to notice that the vortices represent some sort of correlations between
the two chains in the system. In figuB a configuration of two vortices(1; ») = +1 and
v(2; ") = +1 (r # '), is represented. This configuration corresponds to a pair composed of
the vortexv™ () = +1 and the antivortex— (') = —1, which tend to be bound to each other;
at the same time, it also gives two vortiaggr) = v*(r’) = +1, which are inclined to repel
each other. We thus have opposite tendenciesfandv—, in the configuration consisting of
a vortex on one space-time layer and an antivortex on the other. As shown in section 5, it is
the vorticeq v~} that provide a manifestation of the particle—hole pairs and play a major role
in the quantum phase transition.

é

-
— &

i v(1)

* ‘ v
\ !

Figure 3. The displacement vortex_. The configuration of one vortex(1; ) = +1 on space-
time layer 1 and another(2; »') = +1 on layer 2 £ # ') corresponds to a pair composed of a
displacement vortex (r) = +1 and antivortex— (r') = —1.

Equation (16) shows thét~ (0) is always divergent, thus giving rise to thertex number
equality conditior)_,. v(1; ) = >, v(2; ) or, equivalently, the vorticity neutrality condition
> . v (r) = 0forv~ in equation (15). A similar neutrality conditiod, . v*(r) = 0, should
be satisfied unlesSy = 0 (see reference [8]). Itis important here to notice that the two fields
v* andv~ are in fact not independent of each other simgg?; r) in equation (13) and hence
v(¢; r) can take only integer values. As depicted with open circles in figure4y~) at each
r can take the form of only half of the elements in the product set of intéger<Z; v* and
v~ aretopologically coupledvith each other. However, this topological coupling turns out to
be irrelevant and can be safely neglected, as discussed in section 5.
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Figure 4. Topological coupling ob™ andv—. At each space-time positioty*, v—) can take the
form of only half of the elements il x Z, as depicted with the open circles.

3.2. Slanted coupling

In the same way as that leading to equation (13) from the path-integral representation of the
partition function (equation (10)), one can obtain the partition function for slanted coupling:

z~[1 > /Z do(€; r) exp(—S} (17)

Or m(l;r) Y —
with the Euclidean action
S=K Y Cux,x)8co[Vegp(t: 7) = 2mm  (&; ][ Ve (s 7') = 2mm (£'; 7)]
0,0 r,r

+K Y [Vap(ls ) — 2mm (6 7)] (18)
Or

where the time has been rescaled by the corresponding Josephson-plasma freguency
V/2E[E;/h. Unlike the previous straight-coupling case, the last term in the capacitance matrix
C in equation (6) makes it useless to replace the variaplésr) andm(¢; r) by ¢*(r) and
m*(r), respectively. Instead, we thus integrate (#; ) directly to get the Hamiltonian for

2D classical vortices:

Hy = 47°K Y v(t: 1)Uo(r — vhu(t: 7) + 4r?K Y o™ (MU (r — v)v™ ()

Lr,r r,r

+472K Y vy (MU (r = vy (') (19)

r,r

where the vortex interactions are again given by the Fourier transforms

W 3 A@AW®)
o(q) T(q){ @) +[1+C@]A@)] + 16T (q) (20)
ﬁI(Q) = _A(q)

4T (9)

with

~ ~ 1
T(q) = [A@@) +C(@A@]{Alg) +[1+C(@)] Alw)} + 1—6A(61)A2(w)- (21)
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In equation (19), the vortices™ and v, are defined by the direct differenae (r) =
[v(1; r) — v(2; r)] and by the slanted differeneg (r) = [v(L; r) —v(2; 7 +€,)], respectively
(see figure 5).

Here the appearance of the additional term depending,0i$ not surprising since a
vortex on one space-time layer leads to two alternative (nearest-neighbouring) sites for the
corresponding vortex on the other space-time layer. However, at the long-time and large-
length scales in which we are interested, any configuratiar) @fives the same energy as the
corresponding configuration of , as can be observed in figure 5. Thug,in the last term in
equation (19) can be simply replacediby, leading to

Hy ~47°K Y v(l; 1) Uo(r — vhu(t; 7') + 87°K Y v (r)U;(r — v v~ (r'). (22)

e, rr

! \

| +

Figure 5. The displacement vortex for slanted coupling. At large (space-time) lengths, the vortex—
antivortex pair ofv; yields the same energy as thatof.

This point can also be shown in a more rigorous way by rewriting the Hamiltonian in
equation (19) in terms of*(r): Hy = H}; + H, +§Hy, WhereHé‘ has the anticipated form

Hy = 272K Y v *(mU*(r — r')v*(r) (23)

with the vortex interactions
U (q) = Uo(q)

- 1+C(q) ~ Aq)A(w) (24)
U =——|A(g)+C@®A t—
@ == [A(@) + C@A@]+ — 5 @
The termé Hy, defined to be
2
SHy = %Ka;i Z v (r) SU vP (') (25)
with
~a A(g) [ +A(g) +2ising
B N ——

describes the interaction betweehandv—. Since the numerator in the interactidbi®® (@)
is of third order ing, at long times and large lengthg {~ 0), § Hy can be ignored compared
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with Hat. Moreover, in the low-frequency and low-momentum limit (ig®. <« A;1 =

16Co(1 + Cp) andw? « 1 for the self-charging model’y = 0), andg?, w?® « 1 for the
nearest-neighbour charging modéh (= 0)), the vortex interactions in equation (24) simply
reduce to those for straight coupling, given by equation (16). For this reason, itis concluded that
atlong times and large lengths, the 2D vortex representations for straight and slanted couplings
are equivalent to each other except for the different coupling consténts/2 for straight
coupling andK for slanted coupling. Here it should be pointed out that the emergence of
the momentum scale; ! for the self-charging model traces back to the long-range interaction
between the particle—hole pairs in equation (9). As a result, in a system of finite size, the
interactionU ~ between the vortices™ may be anisotropic in the space and time directions.

4. Generalized conductivity

The mathematical mapping in the previous section allows us to study the existence and the
universality class of the phase transition. Itis further needed to identify the phases on both sides
of the transition (see section 5); for this purpose, it is convenient to examine the responses of
the system to external perturbations. In this section, we consider the generalized conductivity,
i.e., the current response functiegy (w) of chain¢ to the voltage applied along chain
(see figure 1 and figure 2), expressing it in terms of the vortex representation discussed in the
previous section.

The standard linear response theory gives the generalized conductivity in the form of the
analytic continuation

1. ~ . .
ow (W) = iw (Izano G (q, i — @ +i0%) @7)

whereggg/ is the Fourier transform of the imaginary-time Green'’s function
G (x, ) = (T:[1(£; x, )1 ('; 0, 0)]) (28)

with the time-ordered produdt, and the current operatd¢; x) = sinV,¢ (¢; x). Owing to
the symmetry between the two chains, the componentando,; can be written as

1
on(@) = 7 [04(@) + 0 ()] (29)

1
o21(w) = Z [0+(w) — 0_ ()] (30)

where theo. have been defined in a manner analogous to equations (27) and (28), with
I*(x) = I1(1;x) £ 1(2;x). In the same manner as in section 3, one can get the vortex
representation of the corresponding Green'’s functngsee the appendix):

Gi(ry,ma) = Vi, Vo, [—%U*m, r2) +4w% Y Ut (e, v))U*(ra, 1)) <vi<r1)vi<r’2>)v}

(1)

wherey = +/2/1 for straight/slanted coupling, and the average), is taken with respect

to the total vortex Hamiltonia#l, = H; + H,,. In equation (31), the Hamiltoniari;" in
equation (15) and the interactiobs" in equation (16) have been used for both straight and
slanted couplings, which should be valid at long times and large lengths. One advantage of
the representation in equation (31) is that the vortex contribution in the second term can be
estimated by means of the standard renormalization group (RG) approach for 2D classical
vortices [5,11, 14].
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5. Quantum phase transitions

In this section, we turn to the main subjects of this work and investigate the quantum
phase transitions and current-drag effects in the system, based on the 2D classical-vortex
representations given by equations (15) and (23) together with the response functions in
equation (27). In section 2, it has been established that, aside from the difference in the
coupling constant, the two coupling schemes are equivalent at long times and large lengths.
We thus focus on the straight-coupling case; the results are also applicable in full to the slanted-
coupling case with the coupling constant properly adjusted. Some notable differences between
the two cases will be discussed at the end of the section.

It is not difficult to understand the physics describedHy and by H,,, given by equ-
ation (15), separately. Unless = 0, the length-dependent anisotropy dueCttq) =
C(g) (K1) in the interaction/*(q) given by equation (16) fades out on (space-time) length
scales larger tha/C1/Cq; therebyU™*(r) = 2x[U*(0) — U*(r)] simply reduces to the
isotropic logarithmic interaction

U*(r) ~ /Colnr (32)
for r > 1. This results in the usual vortex Hamiltonian
Hy ~ —a K} Y v ) Injr — v/ jv* (r) (33)

with the effective coupling constaii;,, = /E;/16E,. In the system withEo, E1 > E,,
which is considered heré, ;, is substantially smaller than the BKT transition pakfixr ~

2/m. Accordingly, the vortices™ always form a neutral plasma of free vortices regardless of
K (i.e., regardless af;). In the cas&y = 0, on the other hand/* (r) becomes short ranged:
U*(r) ~ J/C1exp(—r/+/Cy); still the vorticesv™ form a (non-neutral) plasma of free vortices.
Thus in any case the system of vortiagsis concluded to form a plasma of free vortices,
regardless of the value @&. We next examine the behaviour of the vortieesdescribed by
H, . With the short-distance anisotropy neglected, we Havéq) ~ 1/[A(g) + A(w)] and

the interaction/ ~ (r) E/?N[U_(O) — U~ (r)] isotropic in the space and time directions and
logarithmic in distanceU (r) ~ logr. This leads to the 2D Coulomb-gas Hamiltoniandor

H, ~ —V2r%K Z v (r)Injr — ' |v () (34)

which indicates that the system of vortices exhibits a BKT-type phase transition at
K = K. = 2Kpgr ~ 24/2/m.

At this point, it appears suggestive to conclude that as decreased, the total systéfi
undergoes a BKT-type transition 2K zx+ which is entirely driven by the vorticas™, with
v* playing norole. This scenario, however, should be carefully checked against the topological
coupling between* andv™ discussed in the previous section. To this end, it is convenient to
consider the subsystefn*} of {v*}, satisfyingv~(r) = 0 for all r. In this subsysteny*(r)
can take only even values, and the Hamiltonian can be written in the form

. v*(r) v ()
Hy ~ —m(4K},,) Z — Injr — 7| >

(39)

unlessCy = 0. Under the assumption th&y, E1 > E;, we again haveK:ff <« Kpgr,

and there are a significant number of free vorticeagfwhich is obviously true also in
the caseCy = 0. These free vortices af* substantially affect the topological coupling and
eventually makeitirrelevant: asillustrated infigure 6, the vortex—antivortex pairisfalways
accompanied by two vortices of (enclosed in dotted ellipses). The interaction between these
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Figure 6. Due to the topological coupling, the vortex—antivortex pair of the displacement vortices
v~ induces two vortices of* (indicated by dotted ellipses). The interaction between these
two vortices is, however, completely screened out by the free vortice$ wfith vorticity 42
(represented by the double arrows).

two vortices ofv* is completely screened out by the free vortices'ofrepresented by double
arrows). The two vortices af*, therefore, do not affect the interaction energy of the vortex—
antivortex pair ob—, changing only slightly the fugacity ef. Itis thus concluded that &is
increasedthe system does indeed exhibit a BKT-type transitidtiar V2Kgkr ~ 232/,
which is exclusively attributable to the vortices.

To examine the states of the system on both sidek®f we first note that the
vorticesv* () are topological singularities in the 2D space-time configurations of the phases
oT(r) = ¢(L; ) + ¢(2; ). The plasma of free vortices of leads to complete disorder
of ¢*. According to the uncertainly relation betweghand the conjugate variabtg (x)/2,

i.e., A¢* A(n*/2) = 1, this indicates that* (x) for eachx takes a well-defined value, which
should be zero due to the large single-charge (Cooper-pair) excitation energy of the order of
Eg or of E;. Due to this conditiom™ (x) = 0, the variable:™ (x)/2 conjugate t@~ measures
precisely the number of pairs of an excess and a deficit in Cooper pairs (i.e., particle-hole
pairs). Furthermore, it is also noted that the effective model in equation (15) or equation (34)
is a vortex representation of the quantum phase model [5, 8]:

1 n=(x) 2 K _
HQPM=ﬁKZXj[ > ] +ﬁzxjcosvx¢ (x). (36)

Therefore, the BKT-type phase transition/&¥ driven byv~ is nothing but an insulator-to-
superfluid transition of the particle—hole pairs: although particle—hole pairs are always the
lowest excitations, they cannot move along the system without an external bias Kglow
due to the Coulomb blockade associated with the charging ernergyFor K > K, on
the other hand, the particle—hole pairs condense to form a superfluid and can move freely
along the system (see figure 7). The formation of bound dipoles of voiticesan effective
manifestation of the condensation of the particle—hole pairs.

Such particle—hole pair transport can be confirmed by examining the current responses
of the two chains, given by equation (27). Due to the free vorticas pit follows directly
from equation (31) that.(w) vanishes (forw <« 1). On the other hand, the tightly bound
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Superfluid of
particle-hole pairs
Kst i
c s~
| Ksl
Insulator of
particle-hole pairs
S [N
Ky, K == = = Ko, Ky
0 Insulator (Single-charge excitations) 0

Figure 7. Schematic phase diagrams of capacitively coupled Josephson-junction chains (a) with
straight coupling and (b) with slanted coupling. The intra-chain coupling conskaraad K, are
defined byKo = /E;/8Eo o +/Co and byK1 = /E;/8E1  /C1, respectively. In the text,

only the region of >> Ko, K1, where particle—hole pairs are relevant, is considered. The shaded
regions in the picture indicate the crossover from the regime with the single charges dominating to
that with the particle—hole pairs dominating.

vortex—antivortex pairs of~ abovek:’ result in the response functige < 1)

2w K
and
T K
on(w) = —oz(w) = m(z - K—R>5(w) (38)
where the renormalized coupling consté&ht is defined according to
V2 V2 n? 2~
L-K 2 Z 72 (v™ (r)v=(0)). (39)

The system thus exhibisiperconductivitgnd carries currents along the two chains that are
equally large in magnitude but opposite in directidrhis perfect drag of supercurrents reveals
that the charges do indeed transport in the form of particle—hole pairs, which are bound by
the electrostatic energyf, associated witlC;. For K < K’, on the other hand, the system
displaysinsulating particle—hole current—voltage characteristics, qualitatively the same as those
in references [2-4].

The whole argument put forward so far in this section also holds for slanted coupling if
one simply replace /+/2 by K. Accordingly, the system with slanted coupling exhibits a
BKT-type transition ak*’ ~ K, and the superfluid state is characterized by the response
functions

™ (oK) 40
on(w) = —o21(w) = 4K< KR> (@) (40)
where
1 1 =

2
=% 32 > P (0)). (41)
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It is interesting, however, to notice that!’ is far smaller thanks’ (see figure 7). This
reflects the difference between the two coupling schemes as regards the underlying transport
mechanism: the correlated sequential tunnelling of particle—hole pairs, which is a first-order
process, is more likely than the second-order cotunnelling process. It should also be pointed
out that due to the additional length scale(>>1) (see the comments below equations (9)

and (26)), the system size is required to be sufficiently large for the universal behaviour of the
BKT transition.

6. Conclusions

We have investigated the properties associated with particle—hole pairs in two capacitively
coupled Josephson-junction chains, considering both the system with straight coupling and that
with slanted coupling. In particular, the transport of particle—hole pairs has been found to drive
the BKT-type insulator-to-superfluid transition with the coupling capacitance varied, in both
coupling schemes. The superfluid phase present in the regime of large coupling capacitance
is uniquely characterized by the absolute drag of supercurrents along the two chains.

Such capacitively coupled Josephson-junction chains can presumably be realized in
experiment, even by present techniques. Recent advances in micro-fabrication techniques
have already made it possible to create large arrays of ultrasmall Josephson junctions [16].
Furthermore, the experimental realization of the capacitively coupled submicron metal-
junction arrays [3, 4] illustrates that large inter-array capacitances can also be fabricated from
two Josephson-junction arrays.

In view of such an experimental situation, it is desirable to examine the assumptions made
in this work and to discuss possible generalizations to more realistic cases. First of all, note that
this work has considered the chains mainly in the self-charging 0) or nearest-neighbour
charging Co = 0) limit. On the basis of reference [8], however, it can be argued that the
qualitative results remain valid for realistic cases of general capacitances. The assumption of
identical chains made throughout this paper can also be justified as follows: the difference
in the intra-chain capacitances leads to additional coupling between the vaxj}im v,
with the coupling strength proportional to the difference. The arguments on identical chains
therefore remain valid qualitatively as long as

IC(L q) — C(2: q)| < |C(1; @) +C(2 q).

The difference in the Josephson coupling energy, on the other hand, can be effectively
incorporated in the capacitance difference by renormalizing the parameters, since all the effects
considered in this work depend only on the relative strength of the energy of the Josephson
coupling to the charging energies.

We also point out that quasiparticles have been safely neglected in obtaining equilibrium
properties at zero temperature. At finite temperatures or large voltage bias, there may exist
a significant number of quasiparticles, which cause dissipation in the system [16]; still in the
weak-dissipation limit, our results should not be affected qualitatively [7]. Furthermore, it
should be kept in mind that too high a voltage or current biasing one chain can destroy the
bound pairs of particles and holes, making the supercurrent in the other chain vanish.

Finally, we remark that it will be valuable to investigate the effects of charge frustration,
induced by the gate voltage applied between the substrate and the array, in the slanted-coupling
case. From the results of the previous work [9], it can be anticipated that the charge frustration
should lead to a rich phase diagram, although the details remain to be accounted for more
carefully.
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Appendix

This appendix presents the derivation of the vortex representation of the imaginary-time Green’s
function given by equation (31). For simplicity, ondly. for straight coupling is derived here
since the application of the same approacti.tshould be straightforward. At long times and
large lengths, the derivation should also hold for slanted coupling, with the replacement of
K /v/2 by K (see section 3).

In the imaginary-time path-integral representation, the Green’s fun¢tiany, r,) =
(I_(r1)I_(rp)) can read

1 2n 0 0
G-trird =gz |12 [ don {wxqb(l; ) V.2 m}

&r nr) /0
X { 9 - 0 } exp{—S[n, ¢]} (A1)
IVip(Lir)  0Vip(2 7o) ’
where the Euclidean actighis given by equation (11). By changing the variables febft; )
andm(¢; ) to ¢* (r) andm® (r), respectively, one obtains

2 ) ) 5 . e
G-t = g7 [ 111 2 / W ) 3V SRS S

a=Et r mo(r)

(A.2)

whereS* have been given in equation (14). Thé&-integration can be performed easily by
first introducing an auxiliary field as follows:

2
0-rra =~z [[ X [ @00 [ @0 g s oot~ 57) - (A3)
a;r me(r)
where
= ﬁ Z JE [ ] e + «/;K Z [7Em)
+iY I - [Vorr) — 2rm* ()] (A.4)

Integrating out*(r), one finally gets the vortex representation of the Green’s fungtion

2
G_(r1,72) = V,, Vs, —%_U(rl, rp) + 42 Z U™ (ry, DU (12, 75) <v(1"1)v(r/2)>v}

T
(A.5)

where the average- -) is taken with respect to the total vortex Hamiltonidp = H;; + H,, .
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