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Abstract. We investigate analytically the quantum phase transition in a system of two chains
of ultrasmall Josephson junctions, coupled capacitively with each other. Two different schemes
of the coupling, straight and slanted, between the two chains are considered. In both coupling
schemes, as the coupling capacitance is increased, the transport of particle–hole pairs is found
to drive a quantum phase transition of the Berezinskii–Kosterlitz–Thouless type from insulator
to superconductor. A substantial discrepancy between the transition points in the two coupling
schemes is observed, which reflects the difference between the transport mechanisms.

1. Introduction

Systems of ultrasmall tunnel junctions composed of metallic or superconducting electrodes
have attracted considerable interest, owing to the remarkable roles of the Coulomb interaction.
Of particular interest here is the Coulomb-blockade effect due to sufficiently large charging
energy, which leads to single-charge (electron or Cooper-pair) tunnelling [1]. In order for
this tunnelling to occur, however, it should be energetically favourable with respect to the
electrostatic energy of the system. Otherwise, more complex elementary processes which
involve several charge-tunnelling events should become dominant. For example, recent theor-
etical prediction [2] and experimental demonstration [3] have revealed thecotunnellingof
electron–hole pairs in two one-dimensional (1D) arrays of metallic tunnel junctions coupled
by large inter-array capacitances (see figure 1). Such cotunnelling of electron–hole pairs results
in the interesting effect of current drag: the current fed through either of the chains induces a
secondary current in the other chain. The primary and the secondary currents are comparable
in magnitude, but opposite in direction.

A similar current-drag effect has also been observed in a system with a slightly different
configuration, where each electrode in one array is coupled aslant to two adjacent electrodes
in the other array (slanted coupling; see figure 2) [4]. Unlike in the case of straight coupling
mentioned above (see figure 1), where the low-energy state can be preserved only if an electron
and a hole tunnel simultaneously (cotunnelling), in this case of slanted coupling the low-energy
state can be preserved for sequential tunnelling of an electron and a hole. It has been suggested
that this correlated sequential tunnelling might be more favourable than the second-order
process of cotunnelling via a quantum-mechanical virtual state.
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Figure 1. A schematic diagram and an equivalent circuit for the system with straight inter-chain
coupling. Crosses superimposed on capacitor signs denote Josephson junctions, each with the
coupling energyEJ and the junction capacitanceC1. The self-capacitance and the inter-chain
capacitance are given byC0 andCI , respectively. After reference [2].
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Figure 2. A schematic diagram and an equivalent circuit for the system with slanted inter-chain
coupling. The symbols have the same meaning as those in figure 1. After reference [4].

More interestingly, in the case where the tunnelling junctions are composed of ultrasmall
superconducting grains, the role of the electron–hole pair is played by the counterpart, the
pair of an excess and a deficit in Cooper pairs, which we simply call a particle–hole pair.
Furthermore, in such ultrasmall Josephson-junction systems, the competition between the
charging energy and the Josephson coupling energy is well known to bring about the noble
effects of quantum fluctuations [5–8]. It has recently been proposed that, combined with
these quantum-fluctuation effects, the cotunnelling of particle–hole pairs in a capacitively
coupled 1D Josephson-junction array (JJA) drives the quantum phase transition from insulator
to superconductor [9]. Here, capacitive coupling should be distinguished from Josephson
coupling (which allows inter-array Cooper-pair tunnelling). The quantum-fluctuation effects
in the corresponding Josephson ladders have been studied in the literature [12].

In this paper, we extend the previous work [9] on two capacitively coupled 1D JJAs to
consider both straight coupling and slanted coupling. The focus will be on the similarities of
and differences between the two coupling schemes. It is shown thatin spite of the remarkable
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difference in the transport at the mesoscopic scale, the two cases are indistinguishable on
long-time and large-length scales: as the coupling capacitance is increased, both cases exhibit
the insulator-to-superconductor transition of the Berezinskii–Kosterlitz–Thouless (BKT) type
[10, 11], whose superfluid phase is uniquely characterized by the condensation of particle–
hole pairs and by perfect drag of supercurrents along the two chains. As contrasted with
the cotunnelling process in the straight-coupling scheme, however, the correlated tunnelling
nature of the elementary process in the slanted-coupling scheme results in a substantially lower
transition point.

This paper is organized as follows. In section 2 we present the models for the systems
with straight or slanted coupling, together with the regions of interest in the parameter space.
Section 3 is devoted to the transformation of the models into equivalent two-dimensional (2D)
systems of classical vortices, while section 4 examines the conductivity of the system in the
vortex representation. On the basis of the results of sections 3 and 4, the phase transition and
the current-drag effect are discussed in section 5, which constitutes the main part of this paper.
In particular, a thorough discussion on the role of particle–hole pairs in the quantum phase
transition and in the transport behaviour is given. Finally, section 6 concludes the paper.

2. Coupled chains of Josephson junctions

We consider a system of two coupled chains of Josephson junctions, where each chain is
characterized by the Josephson coupling energyEJ and the charging energiesE0 ≡ e2/2C0

andE1 ≡ e2/2C1 associated with the self-capacitanceC0 and the junction capacitanceC1,
respectively (see figures 1 and 2). The two chains are coupled with each other by the capacitance
CI , with which the electrostatic energyEI ≡ e2/2CI is associated. Two different ways of
coupling are considered: each island in one array is coupled either parallel to one island (straight
coupling; figure 1) or aslant to two islands (slanted coupling; figure 2) in the other array. There
is no Cooper-pair tunnelling allowed between the chains. The intra-chain capacitances are
assumed to be so small (E0, E1� EJ ) that, without the coupling, the two chains would each
be in the insulating phase separately [6]. It is further assumed that the coupling capacitance is
sufficiently large compared with the intra-chain capacitances:CI � C0, C1. In that case, the
electrostatic energy of a particle–hole pair, which is of the order ofEI , is much smaller than
that of an unpaired charge, which has the order ofE0 or E1. For the most part, this work is
devoted to the case of identical chains, but non-identical chains will also be briefly discussed.

The system with straight coupling is well described by the HamiltonianH = HC +HJ
with the Josephson-energy part

HJ = −EJ
∑
`,x

cos[φ(`; x)− φ(`; x + 1)] (1)

and the charging-energy part

HC = 2EI
∑

`,`′;x,x ′
n(`; x)C−1

``′ (x, x
′)n(`′; x ′) (2)

where the numbern(`; x) of excess Cooper pairs and the phaseφ(`; x) of the superconducting
order parameter in the grain atx on chain` (=1, 2) are quantum-mechanically conjugate
variables: [n(`; x), φ(`′; x ′)] = iδxx ′δ``′ . Rescaling the capacitances in units of 2CI (i.e.,
C0/2CI → C0 � 1 andC1/2CI → C1 � 1), we obtain the Fourier transform of the
capacitance matrix given by equation (2) in the following form:

C̃(q) = C̃(q)
[

1 0
0 1

]
+

1

2

[
1 −1
−1 1

]
(3)
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whereC̃(q) ≡ C0 + C11(q) with 1(q) ≡ 2(1− cosq) is the Fourier transform of the sub-
matrixC(x, x′) within one chain. It is of interest to rewrite the charging-energy part as the
sumHC = H +

C +H−C , with each component given by

H±C = EI
∑
x,x ′

n±(x)V ±(x, x ′)n±(x ′) (4)

wheren±(x) ≡ n(1; x)±n(2; x) and the interactionsV ± are given by their Fourier transforms

Ṽ +(q) = 1

C̃(q)
Ṽ −(q) = 1

1 + C̃(q)
. (5)

SinceC̃(q) � 1, we haveV + � V − and it is obvious from equation (4) that the charge
configurations which do not satisfy the conditionn+(x) = 1 for all x cost huge excitation
energies of the order ofE0 or E1. Accordingly, we expect the low-energy properties of the
system to be dominated by the charge configurations withn+(x) = 0 andn−(x) = 0,±2; in
this case,n−(x)/2 can be regarded as the number of particle–hole pairs located atx.

In the case of slanted coupling, the Josephson-energy part is still given by equation (1), but
for the charging energy it is convenient to rescale the capacitances by 4CI . The dimensionless
capacitance matrix then reads

C̃(q) = C̃(q)
[

1 0
0 1

]
+

1

4

[
1 −1
−1 1

]
+

1

4

[
1 −e+iq

−e−iq 1

]
(6)

and the Hamiltonian of the system is given by

HC = EI
∑

`,`′;x,x ′
n(`; x)C−1

``′ (x, x
′)n(`′; x ′). (7)

With the peculiar form of the capacitance matrix in equation (6), the charging-energy partHC
in equation (7) can be decomposed into two components:

H±C = EI
∑
x,x ′

n±(x)V ±(x, x ′)n±(x ′) +EI
∑
x,x ′

n±sl(x)V
±(x, x ′)n±sl(x

′) (8)

wheren±sl(x) ≡ n(1; x) ± n(2; x − 1) are defined aslant with respect ton±(x), and the
interactionsV ± are again defined by the Fourier transforms:

Ṽ +(q) = 1 + C̃(q)

4C̃(q)[1 + C̃(q)] + sin2(q/2)

Ṽ −(q) = C̃(q)

4C̃(q)[1 + C̃(q)] + sin2(q/2)
.

(9)

As in the straight-coupling case, we haveV + � V − from equation (9), and expect the particle–
hole pairs (n−(x)/2 orn−sl(x)/2) to play major roles in the transport. Unlike equation (5) for
the straight-coupling case, however, equation (9) shows that the interactionV − can be long
ranged in general. For example, in the self-charging model (C1 = 0), the interactionV −

between the particle–hole pairs ranges over the length scaleλ∗ ≡ [16C0(1 +C0)]−1, which
is far larger than unity. This fact may have a significant effect in a system of finite size (see
below). On the other hand, it is of interest that the nearest-neighbour charging model (C0 = 0),
which gives an infinitely long-range interaction in the case of a single (decoupled) chain, leads
to V − which is extremely short ranged (essentially on-site) in the system of coupled chains.
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3. 2D classical-vortex representations

In this section, the two models, one described by equations (1) and (2) and the other by
equations (1) and (7), are transformed into equivalent 2D classical systems of vortices. The
resulting systems reveal clearly the nature of the phase transitions, which will be discussed in
section 5.

3.1. Straight coupling

It is convenient to write the partition function of the system in the imaginary-time path-integral
representation:

Z =
∏
`,x,τ

∑
n(`;x,τ )

∫ 2π

0
dφ(`; x, τ ) exp[−S] (10)

with the Euclidean action

S = 1

2
√

2K

∑
`,`′

∑
x,x ′,τ

n(`; x, τ )C−1
``′ (x, x

′)n(`; x ′, τ )−
√

2K
∑
`

∑
x,τ

cos∇xφ(`; x, τ )

+ i
∑
`

∑
x

n(`; x, τ )∇τ φ(`; x, τ ) (11)

where the coupling constant has been defined to beK ≡ √EJ/8EI , and∇x and∇τ denote the
difference operators with respect tox andτ , respectively. The time has been rescaled by the
Josephson-plasma frequencyωp ≡

√
4EIEJ /h̄, and the (imaginary-) time sliceδτ has been

chosen to be unity (in units of 1/ωp) [13]. The highly symmetric form of equation (11) with
respect to space and (imaginary) time makes it useful to introduce the space-time 2-vector
notationr ≡ (x, τ ) and analogous notation for all other vector variables. We then employ the
Villain approximation [14] to rewrite the cosine term as the summation over an integer field
{mx(`; r)}. Furthermore, with the aid of the Poisson resummation formula [14] and Gaussian
integration, we express the charging-energy term as the summation over another integer field
{mτ(`; r)} and obtain the partition function

Z ∼
∏
`;r

∑
m(`;r)

∫ ∞
−∞

dφ(`; r) exp{−S} (12)

with

S = K√
2

∑
`,`′;r,r′

C``′(x, x ′)δττ ′ [∇τ φ(`; r)− 2πmτ (`; r)][∇τ φ(`′; r′)− 2πmτ (`
′; r′)]

+
K√

2

∑
`;r

[∇xφ(`; r)− 2πmx(`; r)]2 . (13)

Using the variablesφ±(r) ≡ φ(1; r)±φ(2; r) andm±(r) ≡m(1; r)±m(2; r) in the place
of φ(`; r) andm(`; r), respectively, we decompose the Euclidean action in equation (13) into
two parts:S = S+ + S−, with

S± ≡ K

2
√

2

∑
r,r′

C±(x, x ′)δττ ′ [∇τ φ±(r)− 2πm±τ (r)][∇τ φ±(r′)− 2πm±τ (r
′)]

+
K

2
√

2

∑
r

[∇xφ±(r)− 2πm±x (r)]
2 (14)

where the new capacitance matricesC±(x, x ′) have been defined according tõC+(q) ≡ C̃(q)
and C̃−(q) ≡ 1 + C̃(q). One now follows the standard procedure [6, 15] to integrate out
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{φ±(r)}and obtains, apart from the irrelevant spin-wave part, the desired 2D system of classical
vortices, which is also decomposed into the two subsystems. It is described by the Hamiltonian
HV = H +

V +H−V with

H±V ≡
√

2π2K
∑
r,r′

v±(r)U±(r − r′)v±(r′) (15)

where the vorticesv±(r) are related to the vorticesv(`; r) on chaiǹ via

v±(r) ≡ v(1; r)± v(2; r)

and the interactions between vortices are defined via their Fourier transforms:

Ũ±(q) = C̃±(q)

1(q) + C̃±(q)1(ω)
. (16)

It is instructive to notice that the vorticesv± represent some sort of correlations between
the two chains in the system. In figure 3 a configuration of two vortices,v(1; r) = +1 and
v(2; r′) = +1 (r 6= r′), is represented. This configuration corresponds to a pair composed of
the vortexv−(r) = +1 and the antivortexv−(r′) = −1, which tend to be bound to each other;
at the same time, it also gives two vorticesv+(r) = v+(r′) = +1, which are inclined to repel
each other. We thus have opposite tendencies forv+ andv−, in the configuration consisting of
a vortex on one space-time layer and an antivortex on the other. As shown in section 5, it is
the vortices{v−} that provide a manifestation of the particle–hole pairs and play a major role
in the quantum phase transition.

v(1)

v(2)

v
�

êx

ê�

Figure 3. The displacement vortexv−. The configuration of one vortexv(1; r) = +1 on space-
time layer 1 and anotherv(2; r′) = +1 on layer 2 (r 6= r′) corresponds to a pair composed of a
displacement vortexv−(r) = +1 and antivortexv−(r′) = −1.

Equation (16) shows thatU−(0) is always divergent, thus giving rise to thevortex number
equality condition

∑
r v(1; r) =

∑
r v(2; r) or, equivalently, the vorticity neutrality condition∑

r v
−(r) = 0 for v− in equation (15). A similar neutrality condition,

∑
r v

+(r) = 0, should
be satisfied unlessC0 = 0 (see reference [8]). It is important here to notice that the two fields
v+ andv− are in fact not independent of each other sincemµ(`; r) in equation (13) and hence
v(`; r) can take only integer values. As depicted with open circles in figure 4,(v+, v−) at each
r can take the form of only half of the elements in the product set of integersZ × Z; v+ and
v− aretopologically coupledwith each other. However, this topological coupling turns out to
be irrelevant and can be safely neglected, as discussed in section 5.
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v
+

v
�

Figure 4. Topological coupling ofv+ andv−. At each space-time position,(v+, v−) can take the
form of only half of the elements inZ× Z, as depicted with the open circles.

3.2. Slanted coupling

In the same way as that leading to equation (13) from the path-integral representation of the
partition function (equation (10)), one can obtain the partition function for slanted coupling:

Z ∼
∏
`;r

∑
m(`;r)

∫ ∞
−∞

dφ(`; r) exp{−S} (17)

with the Euclidean action

S = K
∑

`,`′;r,r′
C``′(x, x ′)δττ ′ [∇τ φ(`; r)− 2πmτ (`; r)][∇τ φ(`′; r′)− 2πmτ (`

′; r′)]

+K
∑
`;r

[∇xφ(`; r)− 2πmx(`; r)]2 (18)

where the time has been rescaled by the corresponding Josephson-plasma frequencyωp ≡√
2EIEJ /h̄. Unlike the previous straight-coupling case, the last term in the capacitance matrix

C in equation (6) makes it useless to replace the variablesφ(`; r) andm(`; r) by φ±(r) and
m±(r), respectively. Instead, we thus integrate outφ(`; r) directly to get the Hamiltonian for
2D classical vortices:

HV = 4π2K
∑
`;r,r′

v(`; r)U0(r − r′)v(`; r′) + 4π2K
∑
r,r′

v−(r)UI (r − r′)v−(r′)

+ 4π2K
∑
r,r′

v−sl (r)UI (r − r′)v−sl (r′) (19)

where the vortex interactions are again given by the Fourier transforms

Ũ0(q) = C̃(q)

T (q)

{
1(q) +

[
1 + C̃(q)

]
1(ω)

}
+
1(q)1(ω)

16T (q)

ŨI (q) = 1(q)

4T (q)

(20)

with

T (q) = [1(q) + C̃(q)1(ω)
] {
1(q) +

[
1 + C̃(q)

]
1(ω)

}
+

1

16
1(q)12(ω). (21)
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In equation (19), the vorticesv− and v−sl are defined by the direct differencev−(r) ≡
[v(1; r)− v(2; r)] and by the slanted differencev−sl (r) ≡ [v(1; r)−v(2; r+êx)], respectively
(see figure 5).

Here the appearance of the additional term depending onv−sl is not surprising since a
vortex on one space-time layer leads to two alternative (nearest-neighbouring) sites for the
corresponding vortex on the other space-time layer. However, at the long-time and large-
length scales in which we are interested, any configuration ofv−sl gives the same energy as the
corresponding configuration ofv−, as can be observed in figure 5. Thus,v−sl in the last term in
equation (19) can be simply replaced byv−, leading to

HV ' 4π2K
∑
`;r,r′

v(`; r)U0(r − r′)v(`; r′) + 8π2K
∑
r,r′

v−(r)UI (r − r′)v−(r′). (22)

v(1)

v(2)

v
�

v
�

sl

êx

ê�

Figure 5. The displacement vortex for slanted coupling. At large (space-time) lengths, the vortex–
antivortex pair ofv−sl yields the same energy as that ofv−.

This point can also be shown in a more rigorous way by rewriting the Hamiltonian in
equation (19) in terms ofv±(r): HV = H +

V +H−V + δHV , whereH±V has the anticipated form

H±V = 2π2K
∑
r,r′

v±(r)U±(r − r′)v±(r′) (23)

with the vortex interactions

Ũ+(q) = Ũ0(q)

Ũ−(q) = 1 + C̃(q)

T (q)

[
1(q) + C̃(q)1(ω)

]
+
1(q)1(ω)

16T (q)
.

(24)

The termδHV , defined to be

δHV = π2

4
K

∑
α,β=±

∑
r,r′

vα(r) δUαβ vβ(r′) (25)

with

δŨαβ(q) = 1(q)

T (q)

[
+1(q) +2i sinq
−2i sinq −1(q)

]
(26)

describes the interaction betweenv+ andv−. Since the numerator in the interactionδŨαβ(q)

is of third order inq, at long times and large lengths (q→ 0), δHV can be ignored compared
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with H±V . Moreover, in the low-frequency and low-momentum limit (i.e.q2 � λ−1
∗ ≡

16C0(1 + C0) andω2 � 1 for the self-charging model (C1 = 0), andq2, ω2 � 1 for the
nearest-neighbour charging model (C0 = 0)), the vortex interactions in equation (24) simply
reduce to those for straight coupling, given by equation (16). For this reason, it is concluded that
at long times and large lengths, the 2D vortex representations for straight and slanted couplings
are equivalent to each other except for the different coupling constants:K/

√
2 for straight

coupling andK for slanted coupling. Here it should be pointed out that the emergence of
the momentum scaleλ−1

∗ for the self-charging model traces back to the long-range interaction
between the particle–hole pairs in equation (9). As a result, in a system of finite size, the
interactionU− between the vorticesv− may be anisotropic in the space and time directions.

4. Generalized conductivity

The mathematical mapping in the previous section allows us to study the existence and the
universality class of the phase transition. It is further needed to identify the phases on both sides
of the transition (see section 5); for this purpose, it is convenient to examine the responses of
the system to external perturbations. In this section, we consider the generalized conductivity,
i.e., the current response functionσ``′(ω) of chain ` to the voltage applied along chaiǹ′

(see figure 1 and figure 2), expressing it in terms of the vortex representation discussed in the
previous section.

The standard linear response theory gives the generalized conductivity in the form of the
analytic continuation

σ``′(ω) = 1

iω
lim
q→0
G̃``′(q, iω′ → ω + i0+) (27)

whereG̃``′ is the Fourier transform of the imaginary-time Green’s function

G``′(x, τ ) =
〈
Tτ [I (`; x, τ )I (`′; 0, 0)]

〉
(28)

with the time-ordered productTτ and the current operatorI (`; x) ≡ sin∇xφ(`; x). Owing to
the symmetry between the two chains, the componentsσ11 andσ21 can be written as

σ11(ω) = 1

4

[
σ+(ω) + σ−(ω)

]
(29)

σ21(ω) = 1

4

[
σ+(ω)− σ−(ω)

]
(30)

where theσ± have been defined in a manner analogous to equations (27) and (28), with
I±(x) ≡ I (1; x) ± I (2; x). In the same manner as in section 3, one can get the vortex
representation of the corresponding Green’s functionsG± (see the appendix):

G±(r1, r2) = ∇τ1∇τ2

[
− γ
K
U±(r1, r2) + 4π2

∑
r′1,r

′
2

U±(r1, r
′
1)U

±(r2, r
′
2)
〈
v±(r′1)v

±(r′2)
〉
V

]
(31)

whereγ = √2/1 for straight/slanted coupling, and the average〈· · ·〉V is taken with respect
to the total vortex HamiltonianHV = H +

V +H−V . In equation (31), the HamiltoniansH±V in
equation (15) and the interactionsU± in equation (16) have been used for both straight and
slanted couplings, which should be valid at long times and large lengths. One advantage of
the representation in equation (31) is that the vortex contribution in the second term can be
estimated by means of the standard renormalization group (RG) approach for 2D classical
vortices [5,11,14].
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5. Quantum phase transitions

In this section, we turn to the main subjects of this work and investigate the quantum
phase transitions and current-drag effects in the system, based on the 2D classical-vortex
representations given by equations (15) and (23) together with the response functions in
equation (27). In section 2, it has been established that, aside from the difference in the
coupling constant, the two coupling schemes are equivalent at long times and large lengths.
We thus focus on the straight-coupling case; the results are also applicable in full to the slanted-
coupling case with the coupling constant properly adjusted. Some notable differences between
the two cases will be discussed at the end of the section.

It is not difficult to understand the physics described byH +
V and byH−V , given by equ-

ation (15), separately. UnlessC0 = 0, the length-dependent anisotropy due toC̃+(q) =
C̃(q) (�1) in the interactioñU+(q) given by equation (16) fades out on (space-time) length
scales larger than

√
C1/C0; therebyÛ+(r) ≡ 2π [U+(0) − U+(r)] simply reduces to the

isotropic logarithmic interaction

Û+(r) ≈
√
C0 ln r (32)

for r � 1. This results in the usual vortex Hamiltonian

H +
V ≈ −πK+

eff

∑
r,r′

v+(r) ln|r − r′|v+(r) (33)

with the effective coupling constantK+
eff ≡

√
EJ/16E0. In the system withE0, E1 � EJ ,

which is considered here,Keff is substantially smaller than the BKT transition pointKBKT ≈
2/π . Accordingly, the vorticesv+ always form a neutral plasma of free vortices regardless of
K (i.e., regardless ofCI ). In the caseC0 = 0, on the other hand,U+(r) becomes short ranged:
U+(r) ∼ √C1 exp(−r/√C1); still the vorticesv+ form a (non-neutral) plasma of free vortices.
Thus in any case the system of vorticesv+ is concluded to form a plasma of free vortices,
regardless of the value ofK. We next examine the behaviour of the vorticesv− described by
H−V . With the short-distance anisotropy neglected, we haveŨ−(q) ≈ 1/[1(q) +1(ω)] and
the interaction̂U−(r) ≡ 2π [U−(0) − U−(r)] isotropic in the space and time directions and
logarithmic in distance:̂U(r) ≈ logr. This leads to the 2D Coulomb-gas Hamiltonian forv−:

H−V ≈ −
√

2π2K
∑
r,r′

v−(r) ln|r − r′|v−(r′) (34)

which indicates that the system of vorticesv− exhibits a BKT-type phase transition at
K = K−c ≡

√
2KBKT ≈ 2

√
2/π .

At this point, it appears suggestive to conclude that asK is decreased, the total systemHV
undergoes a BKT-type transition at

√
2KBKT which is entirely driven by the vorticesv−, with

v+ playing no role. This scenario, however, should be carefully checked against the topological
coupling betweenv+ andv− discussed in the previous section. To this end, it is convenient to
consider the subsystem{v∗} of {v+}, satisfyingv−(r) = 0 for all r. In this subsystem,v∗(r)
can take only even values, and the Hamiltonian can be written in the form

H ∗V ≈ −π(4K+
eff )

∑
r,r′

v∗(r)
2

ln|r − r′|v
∗(r′)
2

(35)

unlessC0 = 0. Under the assumption thatE0, E1 � EJ , we again have 4K+
eff � KBKT ,

and there are a significant number of free vortices ofv∗, which is obviously true also in
the caseC0 = 0. These free vortices ofv∗ substantially affect the topological coupling and
eventually make it irrelevant: as illustrated in figure 6, the vortex–antivortex pair ofv− is always
accompanied by two vortices ofv+ (enclosed in dotted ellipses). The interaction between these
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v(1)

v(2)

v
+

v
�

Figure 6. Due to the topological coupling, the vortex–antivortex pair of the displacement vortices
v− induces two vortices ofv+ (indicated by dotted ellipses). The interaction between these
two vortices is, however, completely screened out by the free vortices ofv+ with vorticity ±2
(represented by the double arrows).

two vortices ofv+ is completely screened out by the free vortices ofv∗ (represented by double
arrows). The two vortices ofv+, therefore, do not affect the interaction energy of the vortex–
antivortex pair ofv−, changing only slightly the fugacity ofv−. It is thus concluded that asK is
increased,the system does indeed exhibit a BKT-type transition atKst

c ≈
√

2KBKT ≈ 2
√

2/π ,
which is exclusively attributable to the vorticesv−.

To examine the states of the system on both sides ofKst
c , we first note that the

vorticesv±(r) are topological singularities in the 2D space-time configurations of the phases
φ±(r) ≡ φ(1; r) ± φ(2; r). The plasma of free vortices ofv+ leads to complete disorder
of φ+. According to the uncertainly relation betweenφ+ and the conjugate variablen+(x)/2,
i.e.,1φ+1(n+/2) & 1, this indicates thatn+(x) for eachx takes a well-defined value, which
should be zero due to the large single-charge (Cooper-pair) excitation energy of the order of
E0 or ofE1. Due to this conditionn+(x) = 0, the variablen−(x)/2 conjugate toφ− measures
precisely the number of pairs of an excess and a deficit in Cooper pairs (i.e., particle–hole
pairs). Furthermore, it is also noted that the effective model in equation (15) or equation (34)
is a vortex representation of the quantum phase model [5,8]:

HQPM = 1√
2K

∑
x

[
n−(x)

2

]2

+
K√

2

∑
x

cos∇xφ−(x). (36)

Therefore, the BKT-type phase transition atKst
c driven byv− is nothing but an insulator-to-

superfluid transition of the particle–hole pairs: although particle–hole pairs are always the
lowest excitations, they cannot move along the system without an external bias belowKst

c ,
due to the Coulomb blockade associated with the charging energyEI . ForK > Kst

c , on
the other hand, the particle–hole pairs condense to form a superfluid and can move freely
along the system (see figure 7). The formation of bound dipoles of vorticesv− is an effective
manifestation of the condensation of the particle–hole pairs.

Such particle–hole pair transport can be confirmed by examining the current responses
of the two chains, given by equation (27). Due to the free vortices ofv+, it follows directly
from equation (31) thatσ+(ω) vanishes (forω � 1). On the other hand, the tightly bound
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Insulator (Single-charge excitations)
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c
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00
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Figure 7. Schematic phase diagrams of capacitively coupled Josephson-junction chains (a) with
straight coupling and (b) with slanted coupling. The intra-chain coupling constantsK0 andK1 are
defined byK0 ≡

√
EJ /8E0 ∝

√
C0 and byK1 ≡

√
EJ /8E1 ∝

√
C1, respectively. In the text,

only the region ofK � K0,K1, where particle–hole pairs are relevant, is considered. The shaded
regions in the picture indicate the crossover from the regime with the single charges dominating to
that with the particle–hole pairs dominating.

vortex–antivortex pairs ofv− aboveKst
c result in the response function(ω � 1)

σ−(ω) = 2π√
2K

(
2− K

KR

)
δ(ω) (37)

and

σ11(ω) = −σ21(ω) = π

2
√

2K

(
2− K

KR

)
δ(ω) (38)

where the renormalized coupling constantKR is defined according to√
2

KR
≡
√

2

K
− π

2

2

∑
r

|r|2 〈v−(r)v−(0)〉 . (39)

The system thus exhibitssuperconductivityand carries currents along the two chains that are
equally large in magnitude but opposite in direction. This perfect drag of supercurrents reveals
that the charges do indeed transport in the form of particle–hole pairs, which are bound by
the electrostatic energyEI associated withCI . ForK < Kst

c , on the other hand, the system
displays insulating particle–hole current–voltage characteristics, qualitatively the same as those
in references [2–4].

The whole argument put forward so far in this section also holds for slanted coupling if
one simply replacesK/

√
2 byK. Accordingly, the system with slanted coupling exhibits a

BKT-type transition atKsl
c ≈ KBKT , and the superfluid state is characterized by the response

functions

σ11(ω) = −σ21(ω) = π

4K

(
2− K

KR

)
δ(ω) (40)

where
1

KR
≡ 1

K
− π

2

2

∑
r

|r|2 〈v−(r)v−(0)〉 . (41)
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It is interesting, however, to notice thatKsl
c is far smaller thanKst

c (see figure 7). This
reflects the difference between the two coupling schemes as regards the underlying transport
mechanism: the correlated sequential tunnelling of particle–hole pairs, which is a first-order
process, is more likely than the second-order cotunnelling process. It should also be pointed
out that due to the additional length scaleλ∗ (�1) (see the comments below equations (9)
and (26)), the system size is required to be sufficiently large for the universal behaviour of the
BKT transition.

6. Conclusions

We have investigated the properties associated with particle–hole pairs in two capacitively
coupled Josephson-junction chains, considering both the system with straight coupling and that
with slanted coupling. In particular, the transport of particle–hole pairs has been found to drive
the BKT-type insulator-to-superfluid transition with the coupling capacitance varied, in both
coupling schemes. The superfluid phase present in the regime of large coupling capacitance
is uniquely characterized by the absolute drag of supercurrents along the two chains.

Such capacitively coupled Josephson-junction chains can presumably be realized in
experiment, even by present techniques. Recent advances in micro-fabrication techniques
have already made it possible to create large arrays of ultrasmall Josephson junctions [16].
Furthermore, the experimental realization of the capacitively coupled submicron metal-
junction arrays [3,4] illustrates that large inter-array capacitances can also be fabricated from
two Josephson-junction arrays.

In view of such an experimental situation, it is desirable to examine the assumptions made
in this work and to discuss possible generalizations to more realistic cases. First of all, note that
this work has considered the chains mainly in the self-charging (C1 = 0) or nearest-neighbour
charging (C0 = 0) limit. On the basis of reference [8], however, it can be argued that the
qualitative results remain valid for realistic cases of general capacitances. The assumption of
identical chains made throughout this paper can also be justified as follows: the difference
in the intra-chain capacitances leads to additional coupling between the vorticesv+

µ andv−µ
with the coupling strength proportional to the difference. The arguments on identical chains
therefore remain valid qualitatively as long as

|C̃(1; q)− C̃(2; q)| � |C̃(1; q) + C̃(2; q)|.
The difference in the Josephson coupling energy, on the other hand, can be effectively
incorporated in the capacitance difference by renormalizing the parameters, since all the effects
considered in this work depend only on the relative strength of the energy of the Josephson
coupling to the charging energies.

We also point out that quasiparticles have been safely neglected in obtaining equilibrium
properties at zero temperature. At finite temperatures or large voltage bias, there may exist
a significant number of quasiparticles, which cause dissipation in the system [16]; still in the
weak-dissipation limit, our results should not be affected qualitatively [7]. Furthermore, it
should be kept in mind that too high a voltage or current biasing one chain can destroy the
bound pairs of particles and holes, making the supercurrent in the other chain vanish.

Finally, we remark that it will be valuable to investigate the effects of charge frustration,
induced by the gate voltage applied between the substrate and the array, in the slanted-coupling
case. From the results of the previous work [9], it can be anticipated that the charge frustration
should lead to a rich phase diagram, although the details remain to be accounted for more
carefully.
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Appendix

This appendix presents the derivation of the vortex representation of the imaginary-time Green’s
function given by equation (31). For simplicity, onlyG− for straight coupling is derived here
since the application of the same approach toG+ should be straightforward. At long times and
large lengths, the derivation should also hold for slanted coupling, with the replacement of
K/
√

2 byK (see section 3).
In the imaginary-time path-integral representation, the Green’s functionG−(r1, r2) ≡

〈I−(r1)I−(r2)〉 can read

G−(r1, r2) = 1

2K2Z

∏
`;r

∑
n(`;r)

∫ 2π

0
dφ(`; r)

{
∂

∂ ∇xφ(1; r1)
− ∂

∂ ∇xφ(2; r1)

}
×
{

∂

∂ ∇xφ(1; r2)
− ∂

∂ ∇xφ(2; r2)

}
exp{−S[n, φ]} (A.1)

where the Euclidean actionS is given by equation (11). By changing the variables fromφ(`; r)
andm(`; r) to φ±(r) andm±(r), respectively, one obtains

G−(r1, r2) = 2

K2Z

∏
α=±

∏
r

∑
mα(r)

∫
dφα(r)

∂

∂ ∇xφ−(r1)

∂

∂ ∇xφ−(r2)
exp{−S+ − S−}

(A.2)

whereS± have been given in equation (14). Theφ±-integration can be performed easily by
first introducing an auxiliary field as follows:

G−(r1, r2) = − 2

K2Z

∏
α;r

∑
mα(r)

∫
dφα(r)

∫
d2Jα(r) J−x (r1)J

−
x (r2) exp{−S+ − S−} (A.3)

where

S± = 1√
2K

∑
r,r′

J±τ (r)
[
C±(r, r′)

]−1
J±τ (r

′) +
1√
2K

∑
r,r′

[
J±x (r)

]2
+ i
∑
r

J(r) ·
[
∇φ±(r)− 2πm±(r)

]
. (A.4)

Integrating outφ±(r), one finally gets the vortex representation of the Green’s functionG−:

G−(r1, r2) = ∇τ1∇τ2

{
−
√

2

K
U−(r1, r2) + 4π2

∑
r′1,r

′
2

U−(r1, r
′
1)U

−(r2, r
′
2)
〈
v−(r′1)v

−(r′2)
〉
V

}
(A.5)

where the average〈· · ·〉V is taken with respect to the total vortex HamiltonianHV = H +
V +H−V .
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